Essential malaria parasite genes revealed

Researchers have exploited a quirk in the genetic make-up of the deadly malaria parasite, Plasmodium falciparum, to create 38,000 mutant strains and then determine which of the organism’s genes are essential to its growth and survival.

malaria

The African Region continues to bear an estimated 90% of all malaria cases and deaths worldwide

P. falciparum is responsible for about half of all malaria cases and 90 percent of all malaria deaths. New information about the parasite’s critical gene repertoire could help investigators prioritize targets for future antimalarial drug development.

  • After unprecedented global success in malaria control, progress has stalled, according to the World malaria report 2017. There were an estimated 5 million more malaria cases in 2016 than in 2015. Malaria deaths stood at around 445 000, a similar number to the previous year.
  • The African Region continues to bear an estimated 90% of all malaria cases and deaths worldwide. Fifteen countries – all but one in sub-Saharan Africa – carry 80% of the global malaria burden. WHO Report

The international research team led by John H. Adams, Ph.D., of the University of South Florida, was supported by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The study appears in the May 4 issue of Science. Rays H.Y. Jiang, Ph.D., of University of South Florida, and Julian C. Rayner, Ph.D., of the Wellcome Trust Sanger Institute, U.K., collaborated with Dr. Adams in this research.

The complete genetic sequence of P. falciparum was determined more than a decade ago, but the functions of most of its genes remain unknown, and until now only a few hundred mutant strains had been created in the lab.

The difficulties in manipulating P. falciparum stem in part from the extremely high percentage of adenine or thymine (two of the four chemical building blocks that make up DNA) in its genome. Standard methods for creating mutants rely on more variation in gene sequences and so do not work on P. falciparum.

In the new research, Dr. Adams and his colleagues created mutated versions of nearly all the parasite’s 6,000 genes with a technique that preferentially targets areas rich in adenine and thymine, thus exploiting the very feature that had foiled previous attempts at genetic manipulation.

The team used computational analysis to distinguish non-essential genes (those that could be mutated) from essential, non-mutable ones. About 2,600 were identified as indispensable for growth and survival during the parasite’s asexual, blood stage. These included ones associated with P. falciparum’s ability to resist antimalaria drugs, highlighting them as high-priority targets for new or improved antimalarial compounds, the researchers note.

Advertisements


Categories: Diseases

Tags: , ,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s

%d bloggers like this: